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The Eigenfunction Expansion of Dyadic
Green’s Functions for Chirowaveguides

Hon-Tat Hui, Student Member, IEEE, and Edward K. N. Yung, Senior Member, IEEE

Abstract— A general method of formulating eigenfunction ex-
pansion of dyadic Green’s functions in lossless, reciprocal and
homogeneous chirowaveguides is presented. Bohren’s decompo-
sition of the electromagnetic field is used to obtain the vector wave

functions. The method of G,», is used to rigorously derive the mag-
netic and electric dyadic Green’s functions. A specific application
to the cylindrical chirowaveguide illustrates the method.

I. INTRODUCTION

ECENTLY, the theory of chirowaveguide has been a
topic of hot research. The propagation characteristics of
electromagnetic waves in chirowaveguides have been deeply
investigated by many authors [1]-[11]. The increasing interest
in such devices shows their potential applications in the area
of electromagnetics. Basically the presence of chirality in a
medium rotates the plane of polarization of an electromag-
netic wave. Chirality means the rotations in two different
directions are different so that a handedness of the medium
is manifested. This phenomenon has been discovered very
carly in chemistry. Its interest in electromagnetics was first
noted in the field of optics. (A quite detailed description of the
historical background of chirality can be found in the work of
S. Bassiri [12].) The application of chirality to microwaves and
millimeter waves is only a recent matter due to the possibility
of fabricating chiral materials for such frequency ranges [13].
Dyadic Green’s functions relate a current source to its
fields. Hence they are important in the excitation aspect
of waveguides such as the determination of the feed point
impedance. Dyadic Green’s functions in an unbounded chiral
medium [14], [15] as well as in the presence of a chiral
sphere [16] have been formulated. One- and two-dimensional
(2-D) dyadic Green’s functions in chiral media have also
been obtained [17]. Although Engheta et al. [16] sought
an eigenfunction expansion of the electric dyadic Green’s
function with the spherical vector wave functions for the case
of scattering from a chiral sphere, their result is not a complete
expansion [18] and only applicable to source free regions.
More recently, in Li’s [19] formulation of the dyadic Green’s
functions for a radially multilayered chiral sphere, the singular
term accounting for the electric field in the source point was
reinstated but the reason was not explained.
In this paper, we provide a method of rigorous formulations
of the eigenfunction expansion of dyadic Green’s functions
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in lossless, reciprocal and homogeneous chirowaveguides. We

use the method of G,,, [20]. Not only is the electric dyadic
Green’s functions obtained, but also the magnetic dyadic
Green’s functions. The singular term in the electric dyadic
Green’s function is shown to be a natural outcome of the
G, method. A specific application of the method to the
cylindrical chirowaveguide is given to demonstrate the detailed
formulation steps. We hope this work will be useful and
illustrative.

II. FORMULATION

A. Constitutive Equations

In a source-free region with a chiral medium, the consti-
tutive equations have been proposed by several authors. A
detailed description of the different forms of the constitutive
equations and the conditions on their mutual equivalence have
been given by Lakhtakia et al. {15]. Among the various forms
of the constitutive equations, the one deduced by Post [21],
ie.,

aﬁ-l—jvg
JvE+(1/w)B

D= (12)
H= (1b)
is to be used in our present study. This is because it has a sim-
ple expression and is also supported by experimental studies
[21], [22]. In (1a) and (1Db), €, 4 and -y represent, respectively,
permittivity, permeability and chirality admittance of a lossless
and reciprocal chiral medium. The fact that the divergences
of different sides of (1b) are not equal means that it is only
applicable to a source free region. When a source is present,
(1b) must be modified as follows:

B = jyE+ (1/m)B - [v/(we)lJ 2

where J is the impressed current source. (2) reduces to (1b)
when J = 0.

B. Basic Equations and Dyadic Green’s Functions

The basic equations governing a time harmonic electric
and magnetic fields (with the e~7“? dependence) inside a
chirowaveguide can be obtained by using the constitutive
equations in (la) and (2) in the manipulation of Maxwell’s
equations. Putting (1a) and (2) into Maxwell’s equations, we
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get
V x B(R) = wpyE(R) + jupf (B) + 7L T(E) Ga)

—

2
V x H(R) = —jwe (1 + “—Z—)E(R) + wurH (R)
2
+ (1 + HZ—) J(R)
where E is the electric field and H is the magnetic field.

Taking curls of both sides of (3a) and (3b) and with some
simple substitutions, we obtain the vector wave equations

(3b)

V x V x E(R) - 2k\/gw x E(R) - K*E(R)

= (jwu—}—j%Vx)ﬂﬁ) (4a)
V xV x HQR) - 2k\/gw x H(R) - k*H(R)
2
= (1 + _‘%)v x J(R) (4b)

where £ = w,/ue. In fact, equivalent forms of (4a) and
(4b) have been derived in [15. p. 21] with another form of
constitutive equations and with the additional condition of
K = 0. For (4a) and (4b) to have solutions, appropriate
boundary conditions must be imposed. The boundary condition
for a chirowaveguide with ideally conducting walls requires
that the tangential components of the electric field vanishes
on the waveguide walls, i.e.,

A x E(R)=0 &)

where 7 is an outward-pointed unit normal vector defined on
the surface of the waveguide.

Due to the linear property of (4a) and (4b), they admit
solutions of the following forms:

BR) = jwu / / G. (BB J(B)dy  (6a)

H(R) = / / / (Z;m (B, Ry - J(R)dv' (6b)
J

where ée and C_Jm are, respectively, the electric and magnetic
dyadic Green’s functions, and the integrals are carried over the
entire volume of the waveguide. Putting (6) into (3), we obtain

VX Go (R~ ) = k[ G (B B) + G (B )
l K ToR B
+k\/:7]§(R ) (7a)
G ANZ BB
VX Gm(R - R) k2<1+ . )GB(R— )
+k\/g’yém(]:?:— _")
2 = — —
+<1+“Z)15(R—R') (7b)
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where T is the unit dyad and & (ﬁ, R } is the three-dimensional
(3-D) delta function. Taking curl of both sides of (7a) and (7b)

leads to the following differential equations of G. and G,
V X Vx G (B— B - 2k\/E7\7>< G.(R- )
g
= . 1
-k G (R-R)= (1 + E\/g’ny

V x Vx C:r*m (R—- R - 2k\/§7Vx E‘m(}_?:— R

15(R - ') (8a)

= o N 2 = N _
KRG (R-R)= (1 + ’-”-Z—)Vx I6(R—F) (8b)
with the boundary condition
i x Go (R, B)=0. ©)

One more useful relation governing ém can be derived
following the procedure given by Tai [20, ch. 4]. From the
boundary condition on the magnetic field, we have

2
Ax (A - H) = <1+’%)J§ (10)
where J, denotes the surface current density on the boundary
and H* and A~ denote, respectively, the magnetic field inside
and outside the boundary. The factor (1 + ’igi) included is
to account for the chirality of the medium. Putting (6b) into
(10), we get

ax[Gh (R, R -

-

) =

QN

2 = —
R )] = (1412 s )
an

where E‘;ﬁb and é,‘n are, respectively, the magnetic dyadic

Green’s functions inside and outside the boundary and [, is
the 2-D unit dyad defined by

~i

I,=T1 - (12)
and §(7 — 7') denotes the 2-D delta function such that

C. Eigenfunction Expansion

To find the eigenfunction expansion of E’e and (:¥m, we
need to consider solutions to the homogeneous equations of
(4a) and (4b), i.e.,

V x V x E(R) - Qk\/gw x E(R) — K2E(R) =0 (l4a)
V xV x HR) - 2k\/—g’yv x H(R) — kK2H(R) = 0. (14b)

Solutions to (14a) and (14b) in an unbounded chiral medium
have been shown to be linear combinations of the M type and
N type vector wave functions [23], [16], [19]. In fact, solutions
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in a bounded chiral medium such as inside a chirowaveg-
uide are also linear combinations of the M ,]\7 vector wave
functions provided that they satisfy additionally the boundary
condition in (5). Using Bohren’s method [23], we write (3a)

and (3b) as
E(R)] _ [EE)
v [aw) =¥ (59
where
_ wpy o Jwp
K= [—jwa(l + &}—) wu’y] (156)

when we put J = 0 in (3a) and (3b). A linear transformation
of the electromagnetic field of the following form:

PR TR

where

(16b)

diagonalizes K. That is, we have

X-1KX = {’“ 0 }

0 —k_ (172)

where k. and k_ are given by

k+=k<\/i‘-v+\/1+“—ﬁ> (17b)

& &

k_:k<—1/—l£’y+\/1+ﬂi>. (17¢)
& £

Notice that the choice of X in (16) is not umque but our results
do not depend on a particular choice. Ql and Qz are called
the combined fields and when K is diagonalized as in (17a),
they satisfy the following two equations:

Ql(R):l [k+ ] [62 (E)}
v [Qz(R) 0 G| ¥
Gi(B)] _ [ki } [Q'l@]
VXVX[QQ( )] 0 i)
From (18) and (19) we see that solutions to the comblned
fields Q1 and Qz are linear combinations of the M N vector

wave functions provided that they are generated from the same
scalar function. So we have

Qu(R) = aMy(R) + bNy(R) (20a)
Q2(R) = cMa(R) + dNo(R) (20b)

where
M(R) =V x [$1(B)&] = i—v x N1(R) (21a)
Ny(R) = %v XV x [¢1(R)é] = k—lJ;V x M1(R) (21b)
Ma(R) =V x [¢2(R)é] = —El_—v x Na(R) (21c)
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—

Na(R) = —iv XV x [$a(B)d]

- _kiv x Ma(B). (21d)

The unit vector ¢ in (21a)—(21d) is the piloting vector and the
generating functions, ¢; and ¢, for the vector wave functions
must satisfy the following scalar Helmholtz equations

V2361 (R) + k31 (B) =0
V2¢5(R) + k2 ¢2(R) = 0.

(22a)
(22b)

In order that Ql and Q} defined in (20a) and (20b) satisfy
(18) and (19), we must have

a=>b (23a)
c=d. (23b)
Therefore we have solutions to (14a) and (14b) as
Ej(l?:)] [QI(R):l
EriRakte @

where Ql and Qz are given by (20a) and (20b), respectively.
The coefficients a, c or b, d can be further determined by using
the boundary condition of the electric field on the waveguide
walls, ie.,

-

B(Ry=nx [tG,(B) + Ga(R)] =0 (25a)
where
b= (25b)
i

Actually the Ql and Qz so obtained in (20) are eigenfunctions
to (14). They are also mutually orthogonal as shown later.
Thus an arbitrary time harmonic electric or magnetic field
inside a chirowaveguide can be expanded by a linear com-
bination of (J; and 5. In view of (8a) and (8b), the dyadic
Green’s functions G, and G,, can also be expanded by these

eigenfunctions. For G, the expansion is only valid outside
the source point. The reason is that the solenoidal vector wave

functions M ,]\7 (thus él,(jg) are not sufficient because E:e
has a longitudinal part as well and the L type wave function
is also needed for a complete expansion [18]. However we

can expand @m completely in terms of Ql and Qg since ém
is a pure solenoidal dyadic function. When G,, is known,

6’6 can then be obtained from (7b). To obtain the electric
dyadic Green’s function in this way is termed the method

of G,, as introduced by Tai [20]. The discontinuous nature
of the magnetic dyadic Green’s function across the source
point as shown in (11) is the immediate reason leading to the
singular term in the electric dyadic Green’s function when the
electric dyadic Green’s function is derived through the method

of G,,. In the following paragraphs, we illustrate the above
theoretical formulation by a specific application to a cylindrical
chirowaveguide. Because the above formulation has not been
restricted to any specific type of chirowaveguides provided that
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they are filling with a lossless, reciprocal and homogeneous
chiral medium and satisfy the boundary condition in (5), it
is applicable to all chirowaveguides if they satisfy such a
provision.

TII. APPLICATION TO A CYLINDRICAL CHIROWAVEGUIDE

Consider a cylindrical waveguide of radius a, filled with an
isotropic chiral medium and with an ideally conducting wall.
Using the cylindrical coordinate system defined for cylindrical
waveguides in the usual sense, ¢1, ¢2, Q1 and Q2 are found
to be

$1aun(h) = Jn(Aar)elmPeh?
doron () = Jn(Agr)e]"¢eth
Qi) = Axyn [Mix,a(h) + Nian(h)]
Goryn(h) = Bagn [Maagn(h) + Naayn(h)]

(26a)
(26b)
(27a)
(27b)

where

Mixn(h) = V X [p1an(h)E]
j7lJn(Alr)

-
= | _8J.0ur)
or
0

= LV % Niaah)
=

I i

(28a)

Nl)\ln(h) ——V X v[(»bl)qn(h)z]
in Jn()\ﬂ‘!
k hJ (}\17')
+ )\2J (,\17«)

= ——V X Mp\ln(h)
ky

V X [p2rzn(h)Z]
- Jn(Az’r‘)
JnmtE

— __3Jn(;2T)
or
0
1 .
—-];—V X N2)\2n(h)

1

eInd gihz

(28b)
Moxyn(h) =

eI o1z

il

(28¢)

Nopan(h) = =22V XV X [B22,n (3]

8J, (A r)
1| Th e E : e
= —— h_&()‘_ﬂ_) elnd gahz
- 2 n(/\2r)

= ——1—V X Mz,\zn(h). (28d)

From (26)-(28), the subscripts A1, A2, and n attached to the
vector functions designating discrete eigenvalues and b is
determined from the dispersion equations A2 +h? = k2, A3+
h? = k2. J,(A1r) and J,(Aar) are Bessel functions of the
first kind and of the order n. The coefficients Ax,, and Ba,n
and the eigenvalues A; and A, are determined by matching
the boundary condition of the electric field on the surface of
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the cylindrical chirowaveguide. Using (25a), we have

2
—22 7. (Asa)
8Jn(M20) _ nh Jn(Xaa)

da k_

X Ju(Ma)
t[aJ (Ala) +o nh In ()‘la)]

]l

_ 9Jdn(Xxy 1) l
- or "

(29)

where ajng;l’w) —e. For (29) to have nontrivial

solutions for Ay, and B,y the coefficient matrix must be
singular, which in turn requires

A2, (Ala)[ " g (Asa) — k_éjiéi—@]
- A%Jn(/\ga)[zla—th()\la) + k+%(%i)] —0. (30)

Equation (30) has been derived by P. K. Koivisto et al. [9].
When (30) is satisfied, Ay,,, and Bj,,, can be determined as

ki A2J, (0
A o fg]n((;li))a when Jp,(A1a) # 0
An = 8Jn(Apa) (31a)
—t%;_:m’ when J,(A1a) =0
Ban=1. (31b)

Hence the modes (or eigenfunctions) of the_‘electromagnetic
field inside the waveguide, Ex, x,»(th) and Hy, x,»(£h), can
be represented by

g (h) = tQ1a,n(£h) + Gargn(£h), 2272 (32a)
Hyaan(Zh) = Guagn(£h) — 1@or,n(£h), 222 (32b)

The upper lines in the above equations are for modes propa-
gating in the positive z direction while the lower lines are for
those propagating in the negative z direction. These modes
have been proved to be mutually orthogonal [(21) in [24]] and
0 a time harmonic electromagnetic field inside the waveguide,
Eand H, satisfying the Maxwell’s equations and the boundary
condition in (5) can be expanded as

E(R)= Y Tapnun(E)[tG1in(h) + Garsn(£h)]
AlAgn
224 (33)
) = 3 Taun)|Ginn(h) = 1dn ()
Alkzn

224,  (33b)

Note that in (33a) and (33b), n can take both positive and
negative integral values for a particular h. The coefficients
T'x,2on(FR) can be determined by the method given by R. E.
Collin [25]. We consider the expansions

V- [Exysen(Eh) x H — E x Hy agn(£h)]
=H -V x Exan(£h) — Exjagn(£h) -V x H
— Hypyn(£h) -V X E — E -V x Hy a,n(£R)
2
= {(1 + %)E,\l,\zn(:i:h) +j%H,\1A2n(ih)] T
(34)
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Fig. 1. The volume V containing a current source.

where we have replaced the curl terms of E and ff by their
equivalents in (3a) and (3b) and the curl terms of Exagn(£h)
and H aApn(EhR) by their equivalents in (15a). Integrating
both sides of (34) over a volume V that contains the current
source J and is bounded by the waveguide wall and the two
cross-sectional surfaces as shown in Fig. 1, we have

ﬂ [Ex,agn(£h) x H — E x Hy x,n(£h)] - Rds

:/V//[(I—F—)EAI,\M(:I:h)

+ jﬁgﬁhm(ih)} - Jdv (35)
where s is the surface enclosing V' and R is a unit normal
vector defined on s and pointed inward to V. In (35), we have
used the curl theorem to convert the left-hand side volume
integral to a surface integral. Since the integrand of the surface
integral vanishes on the waveguide wall, i.e.,

[Exixan(Eh) x H — E x Hy, pu(£h)] - R
~[E-:)\1)\2n(:i:h) X ’ﬁ,] . H-{- [E X 'fl] . ﬁ,\l>\2n(ih)
=0 (36)

the only contribution to the surface integral is from the
two cross-sectional surfaces (s; and se in Fig. 1). To find
T apn(Eh), we need two orthogonal relations. One is

// Xhi—e Xi_izf) 2ds =0

from (23) in [24]. The surface integral is carried out over
the cross sectional surface, S, of the waveguide. The symbols

¢ and & denote that part of the electric field and h,iandhi
that part of the magnetic field that depend on the transverse
coordinates (r, ¢) only. The superscript + (or —) sign means
that the fields are propagating in the positive (or negative)
z direction. The subscripts p and ¢ represent different eigen-
modes and the asterisk denotes complex conjugation. The other
orthogonal realation is

//(é;txﬁ;t_a;txﬁg).sds:o,

a

(37a)

when p # ¢

(37v)
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which can be srmrlarly derived as (37a). Substitute the expres-
sions of E and H in (33a) and (33b) 1nto the left-hand side of
(35) and consider the E,\lxg(wn)(h) and H,\l,\z(_n)(h) modes.
We then have by using the orthogonal relations in (37a) and

(37b)
// [Exirg(=ny(h) X Hapagn(=h)

- E,\l)‘zn(——h) X H/\1>\2(—n)(h)] - 2ds
(o L
\'4

‘f‘] %zﬁ)\l)‘z(_n) (h):! - jd’l)

1—‘)\1)\271

(38)

where the surface integral over the cross-sectional surface s
has been evaluated to zero because

J/

- Z I‘Arkzn(h)ﬁhkz)n(h) X ﬁh)\z(—n)(h)] : (—ﬁ)ds =0
A Aan

Exprg(—ny(h) X Z Tasnan(B) g agn(h)
>\1A2'I‘L

(39

by using another orthogonal relation in (23) of [24]. Denote the
surface integral on the left-hand side of (38) by I, x,n(—h),
which can be evaluated to be

Diogn(—

// E>\1/\2(—n) h) x Hx,x,n(—h)

— Expaon(=h) X Hy,ay-m(B)] - 2ds

= (_1)"87rj{tA§m{ (1 + g—) [72(A1a) —~ 6uo]

-5

2
xJ2 1 (Ara) + [8Jn+810(r)\1a)} }}

_ B}. h?\ n
tr { (1 + E) —2— [Js()\za) — 57,0]

+ %{ [/\2 _n ;21)2]

dJn_1(A2a)]?
2 1 2__
JZ_1(Xea) + l:——'%'— ]

n+1)2
+ [)\2 - ( a2 ) }J?H»l()‘?.a)

+ [—————BJ"ELEAZQ)J 2} } } (40)
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where 6, is the Kronecker delta defined with respect to n, O p+1(A20) 2

e o = 1, whenn=20 + da ) (42)
€5 90 = 10, whenn#£0°
Hence (The evaluations of (40) and (42) are given in the Appendix).
Taixen(—h) = So
fffv [(1 + HTFYZ)E_;M)\z(—n)(h) +j%ﬁzﬁ)\1)\z(*n)(h)} : jd’U FM)\zn(h) =

I xon(=h) IR [(1+%>E/\1/\2(—n)( h)+ 542 Hy (=) (= h)] -Jdv
R @b Dixgn(h) '
By a similar reasoning but considering the E5, »,(_n)(—h) and (43)

H A ,\2(_n)(—h) modes instead, we have = _ .
Now we can go to find G, which can be obtained from the

Dyagn(h exparision of H in (33b). The magnetic dyadic Green’s func-
/ E/\1 Aa(— w(—h) X )33 Aagn(h) tion G, is defined in (6b). By equating the right-hand sides of
(6b) and (33b), we have as shown in (44) at the bottom of the
- R page, where we have used the primed functions to designate
= Exppon(h) x Hypo(-my(=h)] - (=2)ds that they are defined with respect to the source coordinates.
. h? From (44) at the bottom of the page, we immediately see as
_ 2 2 _

—(=1)"8; {tA { ( k2 ) [72(\1a) 6"0] that in (45) shown at the bottom of the next page.
) Although the expansion of the magnetic field in (33b) is
a’h (n—1)%1 5 defined only outside the source point, its singularity in the

+ — AL — Jn_l(/\la)
4k a? source point is of the order 1/r? (the 1 /7"2 factor resulting
OTn_1(Ma) 2 (n+1)? from the product terms of M M’, MN',NM' or NN’ in (33b)
+ {_"_a__] + {)\1 — ——2—] provided that the current source dose not introduce another
a a =

2
% J? 2. (M) + {8Jn+l()‘1@) order of singularity as the magnetic field, is still integrable
da even at the source point [26].

B2 B2 In using the method of ém to find the electric dyadic
(1+ ) [JZ(A2a) = 6,0]

] } } singularity at the source point). Hence ém, which has the same

e %3 Green’s function, the key step is to obtain an expression of

VX (_}'m while taking into consideration of the discontinuous

a2 _ 132
4kh { [/\ — (n agl) } behavior of G,,, at z = 2. Following exactly the same steps

as in {20, ch. 5] but using the discontinuous property of G,

8Jno_1(A2a)1*  in (11) instead, we have
2 1(A2 )
X Jn_1(>\26l) + [————*aa :l

+ {)\2 - (”+ D ]J2+1()\2a) i

// Gon (R, ) - J(F)do ZPMAQn(ih)[Qw(ih) SGorn(h)| 227
J

A1Agn

- > l:él)h"(j:h)_%é?/\zn(ih):'
)\1A27’L
y fffv [<1+L)E)\1>m(—n)(:Fh)+j JH;\lAz( n)(q:h)] Jdv'
IAlkgn(:’:h)

= Z {Q’Mln(ih) - %QZAzn(ih)]

Arden
_ Iy { [t(l + Hai> +j/ii] —'llz\l(—n)(:Fh) + [(1 + HTﬂ/z) —J"Z—;] ééAz(_n)(¥h)} - J'dv!
B Do (Fh)

224 (44)
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+ [V x Go(R - RNU( - 2) IV. CONCLUSION
172 W-T RIS We have laid down a general method of formulating dyadic
+ (1 + T) (I -22)8(R - R (46) Green’s functions by eigenfunction expansions in homoge-

neous chirowaveguides. The electric and magnetic dyadic

- _ Green’s functions for a cylindrical chirowaveguide have been

where G, and G, are now the magnetic dyadic Green’s rigorously derived. With these dyadic Green’s functions, the

functions for z > 2’ and z < 2/, respectively, and U is the unit  problem of radiation by a current source inside a chirowaveg-

step function. Substituting (46) and (45) into (7b), we obtain  uide can be solved. This will help determine the excitation
method and feed point impedance of the chirowaveguide.

Ge (K - }fl) B APPENDIX
= 2 (1 " Vx Gm(R~R) The evaluations of the integrals in (40) and (42), i.e.,
+ o
\/E_é‘ ) I>\1)\2n(:Fh)
Ery = —_ —_ 1 = — — —_ —
- Gn(R—R)— = I§(R—R') = // [E)q)\z(—n)(j:h) x Hy xyn(Fh)
B(1+22) g
1 S 1 = = .
= —kz 225(R - R/) - EAlAgn(:Fh) X H)\IM(_n)(:l:h)] . (:I:z)ds

Mden Iy agn(Fh)ky/1 + ligi 2% pa .
= o Jo [E)\l)\z(—n)(ih) XH}\l)\ﬂl(:Fh)

2N L) 5
X {t[(l + - ) +7 i :IQl)qn(:*:h)Ql)\l(—n)(:Fh) B E’)\lkgn(:f:h) o ﬁ)\l)\z(—n)(ih)] (£2)rdrdg (48)
2

__) - jfﬁ] Q’l A (ih)QEA ( )(:Fh) are given in this Appendix. From (32a) and (32b), we have
te in 2({—n . -
Exina(—n) (£R) X Hx, 2,0 (Fh)

2
MY = =1 - —
+ {1+ —) + Jt—s] Q2xon (£R)Q15, <y (Fh) = [tQ1x, (=) (£h) + Qary(—n)(£h)]
1 A ] A ~ 5 1z
+3 [(1 + 7—) — 35 | Qo (ER) @)y, -y (FH) X | Quaun(Fh) = T @2ren(Fh)
222 @7 = tQ1x, (—n)(£h) X Q1x,(Fh)
= Q1 (=n)(Fh) X Q2x,n(Fh)
after some simple manipulations. Note that the singular term + Q’Z,\z(_n)(ﬂ:h) X Qian(Th)
of ée is the same as those appearing in the electric dyadic 1z R x O 3 49
Green’s functions for achiral waveguides [20]. tQ2’\2(”")( ) % @aron(Fh) (49a)

G (R,R) = [QlAln(ih) - %Q%zn(ih)}

1x2n

A
{f(1+#2) + i) Qo) + [(1+ ) - 3] @ancm (T}
IAl)\gn(:Fh)

n
~

1
B Z I}\l)\z’n(q:h’)

r ny_ N -
+ (1 + —l%) = 357 | Q@ (m) ()@ () (FH)
- 2 1 R o
_ (1 n “%) +j-l:—z Q22 (m) (£R) Q1 (—) (F)
1 - 2 _ 1. <
- (1 + ﬂ—) - Jﬂ Q2A2(n)(ih)Q,2/\2(~n)(:Fh)}
i € te |

222 (@5)
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E,\l,\zn(th) X ﬁ)\l)\z(—n)(ih)
[tQ1a0n(Fh) + Qorpn (FN)]

- 1 =
X | Q1x, (—n)(£h) = ;th(—n)(ih)
t@um(:Fh) X C_2.1,\1(—n)(3th)

- Q—‘l)\ln(q:h) X @2A2(—n)(ih)
+ (j?)\zn(:':h’) X @lAl(—n)(ih)

1 - -
- ;Q2>\2n(:Fh) X Qax,(—n)(£h).

@4opy ¢

Hence
{1

[E‘)q)\z("n)(:th) X ﬁAIAZW(:Fh) [2]

- E’Al)\2n(:Fh) X ﬁz\lkz(—n)(ih)] : (iZA)

(31
= z[télAl(—n)(ih) X Qirn(Fh) (4]
1 = = . (51
_ZQ2A2(—n)(ih) X Q?Azﬂ(q:h)} - (£2). (50)
[6]
From (27a) and (27b) 7
G1xs (—my(ER) X Q1A1(n)(¢h) (£2)
= A2, [Mis, oy (£h) + Nixomy(£h)] 1%
X [Mirn(Fh) + Nixn(Fh)] - (£2) ]
= A2 [Mir, 2y (£R) X Mixgn(Fh)
+ Ml/\l(—n)(ih) X Nl)\ln(:Fh) (101
+ Nixy (=ny (Eh) x Mixn(Fh) 1]
+ Nl)\l(—n)(:‘:h) X Nl)qﬂ(:Fh)] < (£2)
= +(-1)"5243 , [12]
y (1 + h_2>an(/\1T) OJu(Mir) _ h [13]
k3 or ky
o[ IO\ (8Ta (A7) 4
E) () )
(51a) [16]
Qory(=ny(ER) X Gorya(Fh) - (£2) [17]
=B, [szg(—n)(ih) + ]v2)\2(—n)(:i:h)]
X [Maoxn(Fh) + Noxn(Fh)] - (£2) el
=B} []\?ZAz(—n)(:th) x Moxyn(Fh) (1]
+ ]‘?2/\2(—71)(:&’1) X ]S’ZAzn(:Fh) 201
+ ]Y:2/\2(—n)(:th) X ]\?2A2n(:Fh) [21]
+ Ny (—n) (£h) X Nox,n(Fh)] - (£2)
= +(-1)"j2B3,,, 2
[23]
" <1 n Z_j)an(AQr) 8Jn8(:2r) n ki_ o
y n2(Jn(A2r)>2+ <8J(/\2r)>2 [25]
r or 26]

(51b)
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Putting (51a) and (51b) into (48) and using the following
formula [20, p. 137]

/ J2(ar)rdr

0
<a2 — g->J,%(aa) + [

can obtain (40) and (42).

a?

B 8T, (aa)]?
T 242

) on
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