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The Eigenfunction Expansion of Dyadic
Green’s Functions for Chirowaveguides
Hen-Tat Hui, Student Member, IEEE, and Edward K. N. Yung, Senior Member, IEEE

AMract-A general method of formulating eigenfunction ex-
pansion of dyadic Green’s functions in lossless, reciprocal and
homogeneous chirowaveguides is presented. Bohren’s decompo-
sition of the electromagnetic field is used to obtain the vector wave—
functions. The method of ~~ is used to rigorously derive the mag-
netic and electric dyadlc Green’s functions. A specific application
to the cylindrical chirowaveguide illustrates the method.

I. INTRODUCTION

R ECENTLY, the theory of chirowaveguide has been a
topic of hot research. The propagation characteristics of

electromagnetic waves in chirowaveguides have been deeply
investigated by many authors [1]–[1 1]. The increasing interest
in such devices shows their potential applications in the area
of electromagnetic. Basically the presence of chirality in a
medium rotates the plane of polarization of an electromag-

netic wave. Chirality means the rotations in two different

directions are different so that a handedness of the medium
is manifested. This phenomenon has been discovered very
early in chemistry. Its interest in electromagnetic was first
noted in the field of optics. (A quite detailed description of the
historical background of chirality can be found in the work of
S. Bassiri [12].) The application of chirality to microwaves and
millimeter waves is only a recent matter due to the possibility

of fabricating chit-al materials for such frequency ranges [13].
Dyadic Green’s functions relate a current source to its

fields. Hence they are important in the excitation aspect

of waveguides such as the determination of the feed point
impedance. Dyadic Green’s functions in an unbounded chiral
medium [14], [15] as well as in the presence of a chiral
sphere [16] have been formulated. One- and two-dimensional
(2-D) dyadic Green’s functions in chiral media have also

been obtained [17]. Although Engheta et al. [16] sought
an eigenfunction expansion of the electric dyadic Green’s
function with the spherical vector wave functions for the case
of scattering from a chiral sphere, their result is not a complete

expansion [18] and only applicable to source free regions.
More recently, in Li’s [19] formulation of the dyadic Green’s

functions for a radially multilayered chiral sphere, the singular
term accounting for the electric field in the source point was
reinstated but the reason was not explained.

In this paper, we provide a method of rigorous formulations
of the eigenfunction expansion of dyadic Green’s functions
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in lossless, reciprocal and homogeneous chirowaveguides. We—
use the method of ~m [20]. Not only is the electric dyadic
Green’s functions obtained, but also the magnetic dyadic

Green’s functions. The singular term in the electric dyadic

@een’s function is shown to be a natural outcome of the

am method. A specific application of the method to the

cylindrical chirowaveguide is given to demonstrate the detailed
formulation steps. We hope this work will be useful and
illustrative.

II. FORMULATION

A. Constitutive Equations

In a source-free region with a chiral medium, the consti-
tutive equations have been proposed by several authors. A

detailed description of the different forms of the constitutive
equations and the conditions on their mutual equivalence have
been given by Lakhtakia et al. [15]. Among the various forms
of the constitutive equations, the one deduced by Posl [21],
i.e.,

5=&E+j~5 (la)

I?= j~i + (1/p)B (lb)

is to be used in our present study. This is because it has a sim-
ple expression and is also supported by experimental studies
[21], [22]. In (la) and (lb), E, ~ and ~ represent, respectively,
permittivity, permeability and chirality admittance of a lossless
and reciprocal chiral medium. The fact that the divergences
of different sides of (lb) me not equal means that it is only
applicable to a source free region. When a source is present,
(lb) must be modified as follows:

1? = j@ + (1/~)B – [~/(w&)]7 (2)

where ~ is the impressed current source. (2) reduces to (lb)

when J = O.

B. Basic Equations and Dyadic Green’s Functions

The basic equations governing a time harmonic electric
and magnetic fields (with the e–~wt dependence) inside a
chirowaveguide can be obtained by using the constitutive
equations in (la) and (2) in the manipulation of Maxwell’s
equations. Putting (1a) and (2) into Maxwell’s equations, we
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where ~ is the electric field and # is the magnetic field.

Taking curls of both sides of (3a) and (3b) and with some

simple substitutions, we obtain the vector wave equations

VxVx@@-2k
[

:TV X ~(~) – k2~(@

(4b)

where k = w@. In fact, equivalent forms of (4a) and
(4b) have been derived in [15. p. 21] with another form of
constitutive equations and with the additional condition of
1? = O. For (4a) and (4b) to have solutions, appropriate
boundary conditions must be imposed. The boundary condition
for a chirowaveguide with ideally conducting walls requires

that the tangential components of the electric field vanishes
on the waveguide walls, i.e.,

?fiXi(fi)=o (5)

where ii is an outward-pointed unit normal vector defined on
the surface of the waveguide.

Due to the linear property of (4a) and (4b), they admit
solutions of the following forms:

E(R)= jwp

M
a?(i, i’) .Y(ll’)dtJ’ (6a)

v

ii(i) =!//am(i, i’) .7(R)W (6b)
~

— —— —
where G, and Gm are, respectively, the electric and magnetic
dyadic Green’s functions, and the integrals are carried over the
entire volume of the waveguide. Putting (6) into (3), we obtain

()-t1+9 76(R-F) (7b)

—
where ? is the unit dyad and 6(6, fi’) is the three-dimensional
(3-D) delta function. Taking curl of both sides of (7a) and (7b)

leads to the following differential equations of ~. and ~~

—

( k’vx)’’’fi-fi)(’a–Pze(i-ii)= 1+: u

()_k2~m(&@= 1+!!!?Vx h(~ –@) (’b)
E

with the boundary condition

iixa(l,lzq=o. (9)

—
One more useful relation governing am can be derived

following the procedure given by Tai [20, ch. 4]. From the

boundary condition on the magnetic field, we have

(lo)

wher~ ~~ den~tes the surface current density on the bounda~

and H+ and H– denote, respectively, the magnetic field inside

and outside the boundary. The factor (1 + ~) included is

to account for the chirality of the medium. Putting (6b) into
(10), we get

\ /
(11)— —— —

where G~ and G; are, respectively, the magnetic dyadic—
Green’s functions inside and outside the boundary and ?S is
the 2-D unit dyad defined by

75=7–M

and /i(F’– F“) denotes the 2-D delta function such that

II
(5(7=’–F)ds’ = 1.

(12)

(13)

C. Eigenfunction Expansion

To find the eigenfunction expansion of ~, and ~m, we
need to consider solutions to the homogeneous equations of
(4a) and (4b), i.e.,

VxVxft(@–2k
{

@ X l?(fi) – k21@?) = O. (14b)

Solutions to (14a) and (14b) in an unbounded chir~ medium
h$ve been shown to be linear combinations of the ill type and
iV type vector wave functions [23], [16], [19]. In fact, solutions
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in a bounded chiral medium such as inside a chirowaveg-
++ Nz(i) = –#v x v x [q!@q

uide are also linear combinations of the ill, N vector wave
functions provided that they satisfy additionally the boundary — –#v x Az2(i). (21d)
condition in (5). Using Bohren’s method [23], we write (3a)

—

and (3b) as
The unit vector 2 in (21a)–(21d) is the piloting vector and the

‘x [%il=KIM
(15a)

generating functions, @l and @2,for the vector wave functions
must satisfy the following scalar Helmholtz equations

v2q51(fi)+ k?pf$l(ii) = owhere (22a)

v2@2(i) + It:@Z(E) = o.K=
[

w py jwp

1
(15b) (22b)

–jw&(l + q) wp~
In order that ~1 and ~z defined in (20a) and (20b) satisfy

when we put ~ = O in (3a) and (3b). A linear transformation (18) and (19), we must have
of the electromagnetic field of the following form:

U=b

[M] ‘Xl$w

(23a)

(16a) c=d. (23b)

Therefore we have solutions to (14a) and (14b) as
where

diagonalizes K. That is, we have

[1
X-lKX = ~+ O

0 –k. (17a)

(17b)

where k+ and k. are given by

,+=k($.+/s)

(~ d-).~.=~– Ev+ (17C)

Notice that the choice of X in (16) is not unique but our results

do not depend on a particular choice. @l and ~z are called

the combined fields and when K is diagonalized as in (17a),

they satisfy the following two equations:

From (18) and (19), we see that solutions to thg c~mbined

fields ~1 and @2 are linear combinations of the Al, N vector
wave functions provided that they are generated from the same

scalar function. So we have

(24)

where @l and @2 are given by (20a) and (20b), respectively.
The coefficients a, c or b, d can be further determined by using
the boundary condition of the electric field on the waveguide

walls, i.e.,

where

“i= (25b)

Actually the ~1 and ~2 so obtained in (20) are eigenfunctions
to (14). They are also mutually orthogonal as shown later.
Thus an arbitrary time harmonic electric or magnetic field

inside a chirowaveguide can be expanded by a linear com-

bination of @l and @z. In view of (8a) and (8b), the dyadic— —
Green’s functions ~. and ~m can also be expanded by these.
eigenfunctions. For G., the expansion is only valid outside
the source point. The reason is that the solenoidal vector wave—
functions a, i$ (thus @l, ($2) are not $ufficient because ~e

has a longitudinal part as well and the L type wave function
is also needed for a complete expansion [18]. However we—— —. . —
can expand Gn completely in terms of Q1 and Qz since G~—
is a pure solenoidal dyadic function. When ~m is known,——

~I(@=afll(fi) + bfi,(fi)
G. can then be obtained from (7b). To obtain the electric

(20a) dyadic Green’s function in this way is termed the method

Q2(@ = cfi2(~) + dfi2(@ @Oh) of ~m as introduced by Tai [20]. The discontinuous nature

where
of the magnetic dyadic Green’s function across the source
point as shown in (11) is the immediate reason leading to the

VI(R) = v x [q%(fi)q = & x fVl(ll) (21a) singular term in the electric dyadic Green’s function when the
electric dyadic Green’s function is derived through the method

I?l(fi) = *V X V X [@l(fi)t] = ;V X til(@ (21b) ‘m.of Z In the following paragraphs, we illustrate the above
theoretical formulation by a specific application to a cylimlrical

fi2(@ = v x [4$2(13t] = –:V x X2(R) (21C) chirowaveguide. Because the above formulation has not been
restricted to any specific type of chirowaveguides provided that
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they are filling with a lossless, reciprocal and homogeneous

chiral medium and satisfy the boundary condition in (5), it
is applicable to all chirowaveguides if they satisfy such a
provision.

III. APPLICATIONTO A CYLINDRICALCHIROWAVEGUIDE

Consider a cylindrical waveguide of radius a, filled with an
isotropic chiral medium and with an ideally conducting wall.

Using the cylindrical coordinate system <efined for cylindrical
waveguides in the usual sense, ~1, $z, QI and 02 are found
to be

where

jnE&.m
1 [1J8~Alv) ejndejhz=—

k+
–nh~
A;J~(A;r)

-b X A&n(h)
= k+

= –+v x km(h)

— —.—

—— –:V X tiz~,n(h).

(26a)

(26b)

(27a)

(27b)

@8a)

(~!8b)

(28c)

(28d)

From (26)–(28), the subscripts Al, AZ, and n attached to the
vector functions designating discrete eigenvalues and h is
determined from the dispersion equations A?+ h2 = k:, );+
hz = k!. J. (Al r) and Jn (A2r) are Bessel functions of the
first kind and of the order n. The coefficients A~l ~ and BA,n

and the eigenvalues Al and A2 are determined by matching
the boundary condition of the electric field on the surface of

the cylindrical chirowaveguide. Using (25a), we have

xK:::]=El
(29)

where ~Jn(AI,2a) _ t?Jn(A1,zr)
& — ~r 1~=~. For (29) tohave nontrivial

solutions for A~l ~ and Bx,n, the coefficient matrix must be
singular, which in turn requires

[

8Jn(A2a)
A~J.(Ala) ~Jn(Aza) – k_ ~a

1

[

ilJn(Ala)
– A~Jn(A2a) ~Jn(Ala) + k+ da

1
= o. (30)

Equation (30) has been derived by P. K. Koivisto et al. [9].
When (30) is satisfied, AA, n and B~zn can be determined as

BA2n = 1. ‘“ (31b)

Hence the modes (or eigenfunctions) of the+electromagnetic
field inside the waveguide, ~~, ~,n (*h) and ~~, ~,~ (+h), can
be represented by

The upper lines in the above equations are for modes propa-

gating in the positive z direction while the lower lines are for
those propagating in the negative z direction. These modes
have been proved to be mutually orthogonal [(21) in [24]] and
so a time harmonic electromagnetic field inside the waveguide,
~ and ~, satisfying the Maxwell’s equations and the boundary
condition in (5) can be expanded as

>,
.Z<.Z (33a)

Note that in (33a) and (33 b), n can take both positive and
negative integral values for a particular h. The coefficients

17~,~,~ (&h) can be determined by the method given by R. E.
Collin [25]. We consider the expansions

(34)
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which can be similarly derived as (37a). Substitute the expres-

A

sions of ~ and 1? in (33a) and (33b) into the left-hand side of

(35) and consider the l?AIA, (_n)(h) and fiAIA,(_m)(h) modes.
We then have by using the orthogonal relations in (37a) andn

L
------------11--------””----------;–4

z (37b)
~

r,1A2n(-h)/j[E’,l,+n)(h)x17,,.2n(-h)
SI

I
- -&n(-h) x fL,A2(_n)(h)]“~ds

Fig. 1. The volume V containinga currentsource.

=///[(l+q)fiA1A2n)(h)h)

1,’
“

where we have replaced the curl terms of ~ and ~ by their
equivalents in (3a) and (3b) and the curl terms of ~A1~,m(+h) 1+~:fiwt)(h)-~dw (38)

and HA, ~,~ (+h) by their equivalents in (15a). Integrating
both sidej of (34) over a volume V that contains the current where the surface integral over the cross-sectional surface S2

source J and is bounded by the waveguide wall and the two has been evaluated to zero because

cross-sectional surfaces as shown in Fig. 1, we have

JJ[
Z,x,(-m)(h) x ~ rA,Azn

#

(~)&1A2n(~)
[&A,n(*h) x E - E x I%lA,n(+h)] . Rds s, AlA2n

.

.

( ]]dv+j:&2n *h) (35) by using another orthogonal relation in (23) of [24]. Denote the
surface integral on the left-hand side of (38) by lA, ~,n (–h),

where s is the surface enclosing V and R is a unit normal which can be evaluated to be

vector defined on s and pointed inward to V. In (35), we have
L1A2n(-h)used the curl theorem to convert the left-hand side volume

integral to a surface integral. Since the integrand of the surface = //[
.

&A2(-n)(~) x ~A1x2n(–h)
integral vanishes on the waveguide wall, i.e., S1

the only contribution to the surface integral is from the
two cross-sectional surfaces (sl and S2 in Fig. 1). To find

J7xlA,~(M), we need two orthogonal relations. One is

from (23) in [24]. The surface integral is carried out over

the cross-sectional surface, S. of the waveguide. The symbols

e% and e% denote that part of the electric field and ~~and~~
that part of the magnetic field that depend on the transverse
coordinates (r, #) only. The superscript + (or –) sign means

that the fields are propagating in the positive (or negative)
z direction. The subscripts p and q represent different eigen-
modes and the asterisk denotes complex conjugation. The other
orthogonal realation is

//
(+i$-~xi;)<;ds=o, when p # q

S.

(37b)
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where CYnois the Kronecker delta defined

{

1, when n = O
i.e., C$no=

O, whenn #O”
Hence

rA1A2n(–h) =

IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES>VOL. 44,NO. 9, SEPTEMBER1996

with respect to n,

By a similar reasoning but considering the ~J, ~, (_n) (–h) and

~~, ~, (–n) (–h) modes instead, we have

~A1A2n(~)

—— //’[ iAIA, (_n@Z) x &1 A2n(~)

S2

- &A2n(h) x flA1A2(-n)(-h)] “ (-.2)ds

{ {(’+;);[J:(A1a) -’no]
= -(-l)n8nj tA2

+g{[A1-(~;:)2]J,_1,A1a,

‘[aJnJA’a)12+F’-(n:~)21
xJ,+,(A1a)+[~J:)~1a)]2}}

‘J~-JA’a’+[aJnJA2a)12
[ ‘n+1)2J:+102CI)+ A’– ~2 1

+[~Jn:J~@]2}}}. (42)

(The evaluations of (40) and (42) are given in the Appendix).
so

rhkn(h) =

—
Now we can go to find ~~ which can be obtained from the

expansion of 1? in (33 b). The magnetic dyadic Green’s func-—
tion ~~ is defined in (6b). By equating the right-hand sides of

(6b) and (33b), we have as shown in (44) at the bottom of the
page, where we have used the primed functions to designate
that they are defined with respect to the source coordinates.
From (44) at the bottom of the page, we immediately see as

that in (45) shown at the bottom of the next page.

Although the expansion of the magnetic field in (33b) is
defined only outside the source point, its singularity in the
source point is of the order 1/r2 (the l/r2 factor resulting

from the product terms of fi@, fi~, fi~ or i?fi’ in (33b)
provided that the current source dose not introduce another——
singularity at the source point). Hence G~, which has the same
order of singularity as the magnetic field, is still integrable
even at the source point [26].—

In using the method of ~~ to find the electric dyadic
Green’s function, the key step is to obtain an expression of——
V x Gm while taking into consideration of the discontinuous—
behavior of am at z = z’. Following exactly the same steps—
as in [20, ch. 5] but using the discontinuous property of ~m
in (11) instead, we have

Vx & (i–i’)

= [v x a:(fi - i’)] !!7(, - 2’)

>,
Z<.z

z z Z’ (44)
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— —— —
where G& and G~ are now the magnetic dyadic Green’s
functions for z > .z’ and z < .&, respectively, and U is the unit

step function. Substituting (46) and (45) into (7b), we obtain

G.(i – l?)
—-“(AVx am(ll-li)

/5—
‘(’+%

Em(fi-1+’7@-12)

‘+[(’+%)-’:l~’’2n(*h)~,(,~)(+h)})}>,2<2 (47)

after some simple manipulations. Note that the singular term—
of ~e is the same as those appearing in the electric dyadic
Green’s functions for achiral waveguides [20].

IV. CONCLUSION

We have laid down a general method of formulating dyadic

Green’s functions by eigenfunction expansions in homoge-
neous chirowaveguides. The electric and magnetic dyadic
Green’s functions for a cylindrical chirowaveguide have been
rigorously derived. With these dyadic Green’s functions, the
problem of radiation by a current source inside a chirowaveg-

uide can be solved. This will help determine the excitation
method and feed point impedance of the chirowaveguide.

APPENDIX

The evaluations of the integrals in (40) and (42), i.e.,

L, A2n(7~)

—— //[ EA,&_n)(*h) x &1 A2n(+~)

SI,S2

– -&n(w) x 17A1A2(-n)(+-h)]+(H)cis
“n a

=
//[

iA, A2(_n)(+h) x &, A2n(+~)
00

– -%,n(;h) x ~~,~,(-n)(+h)] “ (+~)rdrdd (48)

are given in this Appendix. From (32a) and (32b), we have

>,
.Z<.Z (45)
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12A1A2n(?h)x IL,(-n)(+
= [db(?h) +CL(w)

[JWJ21KAN>AL 1lUN> UN N1lLKU WAVt! 1 HBUK X ANU 113LH1WvUJ5>, V UL. 44, NU. Y, MX1 E1V1B13K lYYO

Putting (5 la) and (5 lb) into (48) and using the following
formula [20, p. 137]

[
= 2 tfzx,(-n)(+~) x fzhrt(+~)

From (27a) and (27b)

‘F2(Jn(:’r))2+(8Jn$r))21}

x[n2[Jq2+(~J!$ry2]}.
(51b)

/

a

J~(ar)rdr
o

we can obtain (40) and (42).
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